Note

ON COMPUTING REACTION EQUILIBRIUM CONSTANTS

K. NATARAJAN

A.C. College of Technology, Perarignar Anna University of Technology, Madras-600 025 (India)

K.M. KARUPPANNAN and K.A. BHASKARAN

Department of Mechanical Engineering, Indian Institute of Technology, Madras-600 036 (India)

(Received 3 December 1980)

With the advent of high-speed digital computers and the availability of reliable rate coefficients for a large number of chemical reactions, it has now become possible to analyse theoretically the combustion mechanism of many fuels by simulating the oxidation reactions on a computer. One important pre-requisite for such an analysis is the computation of equilibrium constants based on mole concentrations, K_c , for these reactions. The reaction equilibrium constants based on mole concentration of the species involved and the change in the number of moles of the species as the transformation takes place from reactants to product. The equilibrium constant of formation is based on the equilibrium equation of formation of a species from its elements in their normal states.

The equilibrium constants of formation of the species are available in thermochemical tables, but only at regular temperature intervals. Such tables are most useful for quick hand calculations carried out at tabulated temperatures or with linear interpolation, at intermediate temperatures. The calculations carried out by digital computer generally require continuous representations of the thermodynamic properties as functions of temperature. Such approximations are more efficient, both as regards speed and computer storage, than methods of interpolation between tabulated values [1].

An oxidation mechanism of a fuel may involve a large number of elementary reactions but the chemical species involved will be relatively smaller in number. Hence, for ease of computation it is suggested that the equilibrium constants of formation of the species be expressed as a function of temperature, from which the reaction equilibrium constants can be computed.

REACTION EQUILIBRIUM CONSTANTS

Log K_{pi} values have been published for most of the chemical species in the temperature range 300-6000 K at 100° intervals [2]. They stand for the logarithm of the thermodynamic equilibrium constant for the reaction in which the given species is formed from its elements at the indicated tempera-

ture. Hence, the equilibrium constant K_{pj} of any reaction j is computed as

$$\log K_{pj} = \sum_{prod} \log K_{pi} - \sum_{reac} \log K_{pi}$$
(1)

When the log K_{pi} values of the species are not readily available, the reaction equilibrium constants, K_{pj} , can be computed as

$$R \ln K_{pj} = -\left(\sum_{prod} H_{fi}^0 - \sum_{reac} H_{fi}^0\right) / T - \left(\sum_{prod} G_i - \sum_{reac} G_i\right)$$
(2)

The equilibrium constants based on mole concentration are then computed using the relationship

$$K_{\rm cj} = K_{\rm pj}(R_{\rm p}T)^{-\sum_{i=1}^{N}(\beta_i - \alpha_i)}$$
(3)

Generally the reaction equilibrium constants, K_{cj} , of chemical reactions are computed at regular temperature intervals and then expressed as a continuous function of temperature by various approximations, such as

$$K_{\rm cj} = \overline{a} \, T^b \, \exp(\overline{c}/T) \tag{4}$$

$$\ln K_{\rm cj} = k_1 \ln T + k_2 T + k_3 T^2 + k_4 T^3 + k_5 T^4 + k_6 T^5 + k_7 T^6 + k_8 / T + k_9 \tag{5}$$

$$\log K_{\rm ci} = k_1 \ln T + k_2/T + k_3 + k_4 T + k_5 T^2$$

When the above procedure is followed, a definite number of coefficients has to be evaluated for each reaction. Hence for an oxidation mechanism with a large number of elementary reactions, the number of coefficients to be handled becomes large.

For easy computer calculations, a convenient expression for the reaction equilibrium constants can be obtained by fitting an exponential curve of the form $a T^b \exp(c/T)$ to the equilibrium constants of formation of the species which are available at regular temperature intervals in thermochemical tables. Tables 1 and 2 give the coefficients a, b and c for 51 C-H-O-S-N species for two different temperature ranges, 1000-3000 K and 3000-6000 K. The correlation coefficients in all the cases are above 0.999 and this shows how well the curve fits the data.

The coefficients a, b and c of equilibrium constants of formation are used to compute the reaction equilibrium constants as indicated below.

Considering a chemical reaction of the form

$$\alpha_1 \mathbf{A} + \alpha_2 \mathbf{B} = \beta_1 \mathbf{C} + \beta_2 \mathbf{D}$$

(7)

(6)

the equilibrium constants of formation of the species A, B, C and D are expressed as

$$K_{c(A)} = a_1 T^{b_1} \exp(c_1/T)$$
(8)
$$K_{c(A)} = a_1 T^{b_2} \exp(c_1/T)$$
(9)

$$\mathbf{A}_{c(B)} = u_2 I^{-2} \exp(c_2/I) \tag{9}$$

$$K_{c(C)} = a_3 T^{03} \exp(c_3/T) \tag{10}$$

$$K_{c(D)} = a_4 T^{b_4} \exp(c_4/T) \tag{11}$$

The equilibrium constant K_{cj} of reaction (7) is computed as

$$K_{\rm cj} = \overline{a} \, T^b \, \exp(\overline{c}/T) \tag{12}$$

311

TABLE 1

Curve-fitted coefficients for the equilibrium constants of formation of the species for the temperature range 1000-3000 K

 $K_{ci} = aT^{b} \exp(c/T)$ $K_{ci} = c'T^{b'} \exp(c/T)$

K_{pi}	=	$a'T^{b'}$	$\exp(c/T)$
----------	---	------------	-------------

Species	a	a'	Ъ	b'	С
1 CH ₂ O	1.038E 02	1.397E-01	1.1751	0.3249	14 799
2 CHO	8.077E 06	9.843E 04	0.2078	0.7922	1 236
3 C ₂ H₄	5.855E 01	1.060E-04	2.9035	-0.0965	-4475
4 CH₄	1.626E-02	2.414E-06	1.9476	-0.0524	10 982
5 CH	7.337E 02	9.870E-01	1.1466	-0.3534	-16740
6 CoHo	4.557E 07	6.768E 03	1.6987	-0.3013	-27125
7 C2H	3.878E12	5.217E 09	0.6220	-0.8780	-57 955
8 CH ₂	3.500E 04	4.266E 02	0.7910	-0.2090	-45 963
9 H ₂ O	1.538E-01	1.698E-02	0.1635	-0.3365	95744
10 HO ₂	6.889E-02	7.604E-03	0.3604	-0.1396	-2218
11 CO_2	6.377E 02	7.771E 00	0.7601	-0.2399	47 224
12 CO	3.004E 08	3.317E 07	-0.3445	-0.8445	12598
13 CH	8.941E 07	9.870E 06	0.1573	-0.3427	-71649
14 OH	2.374E 01	2.374E 01	-0.1760	-0.1760	-4 823
150	3.394E 01	3.074 ± 02	-0.2325	0.2675	-30160
16 H	2.192E 00	1.986E 01	-0.0093	0.4907	-26 290
17 C	4.051E 09	4.051E 09	-0.3776	-0.3776	-86 753
18 N	1.379E 01	1.249E 02	-0.1278	0.3722	-56972
19 S	1.397E 01	1.265E 02	-0.2028	0.2972	-25 889
20 CN	1.950E 08	2.152E 07	-0.0981	-0.5981	52837
21 CS	1.350E 08	1.490E 07	-0.2126	-0.7126	-20 548
22 NH	8.737E00	8.737E 00	0.0277	0.0277	-40 706
23 NO	5.222E 00	5.222E 00	-0.0148	-0.0148	-10 906
24 NS	2.653E 00	2.653E 00	0.0832	0.0832	-23 967
25 HS	5.311E 00	5.311E 00	0.0232	0.0232	-9 546
26 SO	2.174E 00	2.174E 00	-0.0215	-0.0215	-6919
27 O ₃	4.490E-04	4.957E-05	0.7195	0.2195	-17069
28 CS_2	3.126E 02	3.810E 00	0.9337	-0.0663	-1215
29 NH ₂	1.708E-01	1.886E-02	0.3691	-0.1309	-19633
30 NO ₂	2.151E-03	2.374E-04	0.5889	0.0889	-3784
31 SO ₂	2.993E-04	3.303E-05	0.6918	0.1918	43751
32 N ₂ O	1.039E-05	1.147E-06	1.1177	0.6177	9 403
$33 H_2 S$	9.487E-03	1.047E-03	0.6124	0.1124	11 043
34 S ₂ O	1.680E-03	1.855E-04	0.6152	0.1152	22400
35.COS	4.575E 02	5.576E 00	0.9378	-0.0622	$24\ 305$
36 HNO	1.658E-02	1.830E-03	0.5469	0.0469	-11 547
37 HCN	1.895E 04	2.309E 02	0.7952	-0.2048	-16 207
38 NH3	1.259E-05	1.534E-07	1.1855	0.1855	6976
39 NO ₃	1.598E-09	1.947E-11	1.8492	0.8492	-7 992
40 SO ₃	8.730E-10	1.064E-11	1.6745	0.6745	55 961
$41 C_2 N_2$	4.898E 06	7.274E 02	1.8600	-0.1405	-37 718
42 N ₂ H ₂	1,108E-06	1.351E-08	1.4917	0.4917	-24 225
43 HNO ₃	1,183E-12	1.592E-15	2.6468	1.1468	17501
44 N ₂ H ₄	3.893E-14	0.781E-18	3.4591	1.4591	-8849
45 N ₂ U ₄	2.751E-19	4.0855-23	4.1099	.2.1099	271
40 N ₂ U ₅	2.901E-21	4.756E-26	4.0889	2.1998	-019
$4/O_2, H_2,$	1 0000 00	1 0000 00	0.0	0.0	0
$\begin{array}{c} S_2, N_2, \\ C(S) \end{array}$	T.000E.00	1.00012.00	0.0	0.0	U

TABLE 2

Curve-fitted coefficients for the equilibrium constants of formation of the species for the temperature range 3000-6000 K

 $K_{ci} = aT^b \exp(c/T)$

 $K_{\rm pi} = a'T^{b'} \exp(c/T)$

Species		a		a'	ь	 ь'		с	
$1 \mathrm{CH}_2 \mathrm{O}$		2.248E 03		3.024E 00	0.8411	-0.6589		13 595	
2 CHO		2.763E 08		3.367E 06	-0.1819	-1.1819		-11	
$3 C_2 H_4$		3.459E 02		6.260E-04	2.7220	-0.2780		-5 434	
$4 \mathrm{CH}_{4}$		2.808E-02		4.170E-06	1.9029	-0.0971		10432	
$5 \mathrm{CH}_3$		7.810E 03		1.051E 01	0.8909	-0.6091		-17698	
$6C_2H_2$		1.124 ± 07		1.669E 09	1.8619	0.1381		-26 833	
$7 C_2 H$		3.827 ± 11		5.148E 08	0.8853	-0.6147		-57324	
$8 CH_2$		2.589E 05		3.155E 03	0.5748	-0.4252		-46 774	
9 H ₂ O		8.190E-02		9.041E-03	0.2403	-0.2597		29 6 29	
10HO_2		2.976E 00		3.285E-01	-0.0550	0.5550		-3548	
$11 \mathrm{CO}_2$		1.085E 04		1.322E 02	0.4465	-0.5535		46248	
12 CO		3.757E 09		4.148E 08	0.6248	-1.1248		11742	
13 CH		3.815E 08		4.211E 07	0.0025	-0.4975		-72284	
14 OH		7.992E 01		7.992E 01	-0.3097	-0.3097		-5 257	
15 O		1.914E02		1.734E 03	-0.4277	0.0723		-30 667	
16 H		6.132E 01		5.555E 02	-0.3819	0.1181		-27347	
17 C		7.425 E 09		7.425E 09	-0.4473	-0.4473			
18 N		7.909E00		7.164E 01	-0.0712	0.4288		-56 665	
19 S		4.665E 00		4.226 ± 01	-0.0814	0.4186		$-25\ 512$	
20 CN		8.550E 05		9.439E 04	0.5088	0.0088		51 112	
21 CS		6.527E 08	•	7.205E 07	-0.3880	-0.8880		-21 070	
22 NH		1.067E01		1.067E 01	0.0068	0.0068		-40 805	
23 NO		3.134E 01		3.134E 01	-0.2148	-0.2148		-11484	·
24 NS		4.068E00		4.068E 00	0.0351	0.0351		-24 097	
25 HS		8.455 ± 00		8.455E 00	-0.0269	-0.0269		-9738	
26 SO		1.299E 01		1.299E 01	-0.2211	-0.2211		6345	
27 O3		4.677E-02		5.163E-03	0.2014	-0.2986	•	—18 578	
28 CS_2		1.475E 03		1.798E 01	0.7613	-0.2387		695	
29 NH_2		4.688E-01		5.175E-02	0.2624	-0.2376		-20 097	
30 NO ₂		1.032E-01		1.139E-02	0.1586	-0.3414		5 070	
31 SO ₂		2.696E-03		2.977E-04	0.4468	-0.0532		43 035	
$32 N_2 O$		8.916E-05		9.842E-06	0.8792	0.3792		-10 130	
$33 H_2 S$		7.954E-03		8.780E-04	0.6360	0.1360		11013	
$34 S_2 O$		1.985E-02		2.191E-03	0.3403	-0.1597		21589	
35 COS		1.559E 03		1.899E 01	0.8023	-0.1977		23 879	
36 HNO		2.882E-01		3.182E-02	0.2312	-0.2688		-12 536	
37 HCN		3.439E 04		4.190E 02	0.7335	-0.2665		-16 510	
$38 \mathrm{NH}_3$		3.073E-08		3.745E-10	1.8601	0.8601		8 847	
39 NO3		9.405E-07		1.146E-08	1.1386	0.1386		-10078	
40 SO₃		1.784 E-07		2.175E-09	1.0839	0.0839		54175	
$41 \mathrm{C_2N_2}$		7.994 ± 07		1.187E 04	1.5508	-0.4492		-38 692	
$42 N_2 H_2$		1.593E-06		1.941E-08	1.4588	0.4588		-24 515	
43 HNO3		1.428E-10		1.921E-13	2.1178	0.6178		15 819	
$44 N_2 H_4$		4.652E-14		6.909E-18	3.4543	1.4543		-9 253	
$45 N_2 O_4$		4.685E-16		6.958E-20	3.2841	1.2841		-2 237	
46 N2O5		6.097E-16		9.996E-21	3.3215	0.8215		-4 588	
$47 O_2, H_2,$)								
$S_2, N_2, C(S)$	}	1.000E 00		1.000E 00	0.0	0.0		0	
	,					-			

where

$$\overline{a} = a_3^{\beta_1} a_4^{\beta_2} / a_1^{\alpha_1} a_2^{\alpha_2} \tag{13}$$

$$\overline{b} = \beta_1 b_3 + \beta_2 b_4 - \alpha_1 b_1 - \alpha_2 b_2 \tag{14}$$

$$\overline{c} = \beta_1 c_3 + \beta_2 c_4 - \alpha_1 c_1 - \alpha_2 c_2 \tag{15}$$

The coefficients \overline{a} , \overline{b} and \overline{c} of the reaction equilibrium constant, K_{cj} (both in the forward and reverse directions) can thus be readily computed for any reaction involving the particular species. The units of \overline{a} are (mole cm⁻³) raised to the power $\sum_{i=1}^{N} (\beta_i - \alpha_i)$, \overline{b} is dimensionless and \overline{c} is in Kelvin.

The equilibrium constants of formation of the species based on partial pressure, K_{pi} , are similarly curve-fitted and their coefficients a', b' and c are also given in Tables 1 and 2. In this case the units of \overline{a} are atm raised to the power $\sum_{i=1}^{N} (\beta_i - \alpha_i)$.

The reaction equilibrium constants, K_{cj} and K_{pj} , computed using the coefficients a, b, a', b' and c are found to be in very good agreement with the published thermochemical data.

CONCLUSIONS

The merit of the present method lies in the fact that the equilibrium constants for any number of chemical reactions can easily be deduced with the help of the coefficients of the equilibrium constants of formation of a relatively small number of species. These coefficients are readily useful in the equilibrium composition and flame temperature calculations of fuel-oxidizer mixtures where the equilibrium constants of the dissociation reactions are very much needed. The equilibrium constants of formation of the species given in published thermochemical tables can be readily evaluated with the help of these coefficients with an error <1%. The equilibrium constants of formation of species are as important as the rate coefficients of reactions, and further improvements, including data for larger species not included in the thermochemical tables, are needed to expand detailed combustion kinetic models [3].

NOMENCLATURE

A, B, C, D	chemical species
a, b, c, \overline{a} , \overline{b} , \overline{c} , a', b', k_1 , k_2 , etc	}constants
G	Gibb's energy function
$H_{ m f}^0$	enthalpy of formation at the reference temperature (298 K)
i	species index
j	reaction index
K _c	equilibrium constant based on concentration (mole cm^{-3})
K_{p}	equilibrium constant based on partial pressure

314

Ν	number of species
R	universal gas constant
R_{p}	universal gas constant in cc atm/mole K
T^{r}	absolute temperature (K)
α	stoichiometric coefficient of reactant
β	stoichiometric coefficient of product.

REFERENCES

- 1 A. Prothero, Combust. Flame, 13 (1969) 339.
- 2 D.R. Stull and H. Prophet (Eds.), JANAF Thermochemical Tables, NSRDS-NBS 37, Dow Chemical Company, Midland, MI, 1971.
- 3 C.K. Westbrook and F.L. Dryer, 18th Int. Symp. Combust., The Combustion Institute, Pittsburgh, to be published.